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Materials Science with Data

Property :é Experiments

Materials Data

(((

Predictive

Inverse @ Computational
modeling

design Modeling
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Processing A E Al / Informatics @ Data Analysis Tools

Growing materials data + data-driven methods 2>

e Accurate predictive modeling
* Efficient, on-demand materials design
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Data Sources

Where materials informatics / data-driven design researchers get data

N OQMD o
The Open Quantum ~
- Materials Database 1

Experiments and

Published literature Materials databases _
computation
Materials receiving more focus Built upon known structural Data acquisition
Easy to synthesize or simulate prototypes (not balanced) Can mitigate the bias

These data sources are often biased
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Bias in Materials Databases

Subset of OQMD (size ~3K) bl Jarvis-CFID (size ~11K)
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Why is bias a problem?

.\‘Iicmstrurcturc

From a materials science perspective

 Microstructure information helps modeling

Processing/

materials properties Cenistry 1 g cture A A properties

* Microstructure relies on AE of phases

Temperature

* Biasin AE > problematic property models

From a data science perspective
* Lower bias > better coverage of the design space =

better generalizability of models

Northwestern 117471 (2022)

A. Molkeri, D. Khatamsaz, R. Couperthwaite et al. Acta Materialia 223,




Problem Formulation

Nature Dataset
e Data bias in properties of interest . . .
*
e Deviates from known nature e e

* Lack of representativeness

* Biasis ubiquitous in materials data, but its

level can be reduced
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Information Entropy as a Bias Metric

Information entropy

h(Y) = — J p(y)Inp(y) dy

—> Diversity of a set of Y values.

Define bias among groups

et sy Here we consider h(AE) in each system
* Diversity of AE in a crystal system
;mﬂm * |f low, the system is underrepresented
ey
o

Fairness metric

Here, use crystal system (a natural, * Difference of h among groups = bias

trivial grouping)

Robert (Munro) Monarch, Human-in-the-Loop Machine Learning, 2021

Northwestern



o - - N
6] o (&) o

Formation Energy Per Atom (eV)

[
o
o

0.50

0.25

0.00

-0.25

Information entropy

-0.50

o
o
I
I

cubic

cubic

Distribution of Formation Energy: OQMD-8

hex

hex

Demonstration of the Bias Metric

I

trigonal

trigonal

tetra

tetra

ortho

ortho

mono

mono

triclinic

triclinic

Distribution of Formation Energy: J-CFID unstable
cubic  hex trigonal tetra  ortho mono triclinic stable
1.3 o s
o
1.2
1.1 ® ‘
1.0
Y
W
cubic hex | trigonal tetra ortho mono ftriclinic

Northwestern



ET-AL: Entropy-Targeted Active Learning

To mitigate bias: add data in underrepresented crystal system to increase h.

Start
‘ = Labeled data
> y sy (AE known)
v = Material that leads to
Select most improvement in h
system /,’
| | -
GP Model - Iq_l%
Sample \\/\.\/ T
acqulSItlon Predict & Inference | Sampling
strate
Mean & variance of h i
— Stop?
l Unlabeled data
(AE unknown)
End RN
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Uncertainty Estimation for h

1 (1)
I A ~ (1
: 3’2(1) h,
xz !
y 2) - ~ (2) Predictive
Distribution of y | 72 — h,
~— mean &
Xm GP Model ‘ Known y : variance of
) values resulting h
Unlabeled e Y2 P, (n)
dataset
Monte Carlo (Here y = AE) Resulting k
Sampling

For every x in the unlabeled sample pool, we can

calculate expected improvement (El) in h.
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Experiments for Demonstration

ML models for B and G

Ny Test set
1. Mitigate artificial
Unlabeled set N, structure—stability bias
Ny : ETAL training set
NBESY Random S (Iow bias)

2. ML: bulk & shear moduli

N Random (B & G), important
L mechanical properties

Testbed: Jarvis dataset (~11K)
* remove H, VIIA, VI, and radioactive elements
e N, =1000,Ny ~ 5000, Nt = 5000
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Experimental Results

Labeled set
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Experimental Results

Tried multiple different ML models: NN, trees, SVM, ...
5000 Test set * Hyperparameters are tuned

* Tree-based ensemble models perform better

1954  ETAL training set e ETAL dataset shows systematic advantage
(low bias)
Bulk Modulus 0.765 Shear Modulus
0.840{ === Dataset . % %
1954 1 ETAL 0.760
0.835 - ~— RAND 0.7554 Dataset
‘& % 07504 T ETAL
% ' 1 RAND
Compare ML models for B and G 0.8307 , 0.7451 %
=== | 0.740- —
GradientlBoosting RandorTI1 Forest GradientlBoosting RandonI\ Forest
Model Model
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Conclusions

* We developed and presented
— A metric for measuring bias in (materials) data

— ET-AL framework to mitigate bias by guiding data acquisition

 ET-AL can mitigate data bias, thus benefiting data-driven informatics

= 2

Help improve Guide database Applicable to other

dataset quality construction scientific domains

Northwestern

13



is there bias in materials science databases? what are the problems it may cause?

/. Searching for: bias in materials science databases

/. Generating answers for you...

Yes, there can be bias in materials science databases. Researchers have different focuses and
preferences of what materials to study; some experiments and simulations are easier to conduct than
others which can contribute to bias ! .

However, there are methods to mitigate that bias such as developing an entropy-targeted active learning
method " .

The bias can cause problems such as limiting the scope of research and development 2 .

Are there ways to solve this problem?

/. Searching for: methods to mitigate bias in materials science databases

/. Generating answers for you... & Q &
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Thanks for your attention!
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