Data-centric Design of Combinatorial Materials Systems

Hengrui Zhang

PhD Candidate and Ryan Fellow Northwestern University

Northwestern University hrzhang@u.northwestern.eduhttps://hrzhang.me

Data-centric materials design

Structural complexity and representation

Materials design space

Combinatorial complexity at multiple scales

- Diverse constituents
- Arrangement of constituents
- Disordered

AI/ML models need readable data

How do we **represent** the materials to

capture critical information?

Molecular mixture electrolytes

- ~160 molecules, ~40 salts
- $C(200,4) > 10^7$ compositions
- Infinite if considering fractions

- Molecules have diverse chemistry and geometries
- Mixture = constituents + molecular interactions

Modeling mixture as graph set

Graph neural network (GNN)

Capture chemistry and geometry

Attention mechanism (as in GPT)

- Learns relative importances
- Permutation invariant

H. Zhang et al. PRX Energy (2024)

Benefits and applications

Superior accuracy in benchmark tests

Virtually screened >10,000 new candidate mixtures

Author affiliations 🔻

Published Mar 06, 2024 on Dryad. https://doi.org/10.5061/dryad.pnvx0k6w1

Exp. verified (Tianxing Lai @ UT Austin)

High-throughput, autonomous experiments (Jeffrey Lopez @ NU)

Extend to high-entropy alloys

(Mentoring Ms. Ruishu Huang @ UW Madison)

H. Zhang, R. Huang et al. Mach. Learn: Sci. Tech. (2025)

Examine data behind ML models...

Data **bias** in materials data platforms, e.g., OQMD:

Source: unbalanced focus and knowledge Biased data \rightarrow problematic ML models.

Entropy-targeted active learning (ET-AL)

- A metric to quantify bias
- A framework to mitigate bias
 - Guide new data acquisition
- Construct high-quality database

Summary of contributions

- Generic representation and ML model that address structural complexity
- Data acquisition for design in a broad composition-structure space

Combinatorial complexity formed by diverse constituents × configurations

Digital superlattices

Disordered materials in energy and electronic technologies

Disordered rock salt (DRX) in Li batteries Amorphous semiconductor in electronic devices

Designing combinatorial materials

MIT materials are useful in microelectronic devices:

High Non-linearity (>10⁴) High I_{oN} (>100uA) Memory Specific V_T (<1V) Bipolar Symmetric Operation Cycling V_{TH} Drift (<10mV/dec)

Cross-Point

Selectors

Fast Switching Speed (<10ns) Fast Turn-ON (<10ns) High Endurance (>10¹⁵) 85°C Operation High Linearity (>30dBm) Low Insertion Loss (<1dBm) High Isolation (>30dB) Tunable Threshold Power Handling (>20dBm) >125°C Operation

RF Switches

& Limiters

mmWave

sub-6 GHz

Metal-insulating transition (MIT) materials

• Tradeoff btw. resistivity change $\Delta \rho / \rho$ and temperature $T_{\rm MIT}$ Compounds

Single Phase

Acknowledgments

Ted Sargent I @ NU

Daniel Apley @ NU

Vinayak Dravid @ NU

A. Manthiram

@ UT Austin

Wei Chen

@ TAMU

Dr. Wei Chen's IDEAL Lab

Dr. James Rondinelli's MTD Group

Elsa Olivetti @ MIT Divine Kumah @ Duke

Jie Chen @ VT

A. Georgescu @ IUB