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Data-centric materials design
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Structural complexity and representation
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High-entropy alloys

Combinatorial complexity at multiple scales

• Diverse constituents

• Arrangement of constituents

• Disordered

AI/ML models need readable data

Materials design space

R. Singh et al. Nat. Comput. Sci. (2021)

How do we represent the materials to 

capture critical information?

Molecular mixtures



Molecular mixture electrolytes
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Molecular 
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~160 molecules, ~40 salts
• C 200,4 > 107 compositions

• Infinite if considering fractions

• Molecules have diverse chemistry and geometries

• Mixture = constituents + molecular interactions

Ertl & Rohde, J. Cheminformatics 4, 12 (2012)



Modeling mixture as graph set
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Attention mechanism (as in GPT)
• Learns relative importances
• Permutation invariant

Graph neural network (GNN)
• Capture chemistry and geometry

H. Zhang et al. PRX Energy (2024)



Benefits and applications

6 

Superior accuracy in benchmark tests

Exp. verified (Tianxing Lai @ UT Austin)

Virtually screened >10,000 new candidate mixtures

High-throughput, 
autonomous experiments 
(Jeffrey Lopez @ NU)



Extend to high-entropy alloys
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CrFe NiCo

Fe0.35Co0.3Cr0.2Ni0.15

𝑓𝑓2 = 0.2

𝑓𝑓1 = 0.35
(𝑓𝑓: fraction)

+
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HEA structure Collection of local 
environments (LEs) LE graph set

H. Zhang, R. Huang et al. Mach. Learn: Sci. Tech. (2025)

……

(Mentoring Ms. Ruishu Huang @ UW Madison)



Examine data behind ML models…

Data bias in materials data platforms, e.g., OQMD:
Entropy-targeted active learning (ET-AL)

• A metric to quantify bias

• A framework to mitigate bias

• Guide new data acquisition

• Construct high-quality database

High bias Low bias
Source: unbalanced focus and knowledge
Biased data  problematic ML models.
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H. Zhang et al. Applied Physics Reviews (2023)



Summary of contributions

 Generic representation and ML model that address structural complexity
 Data acquisition for design in a broad composition–structure space
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Combinatorial complexity formed by 
diverse constituents × configurations

Digital superlattices

Disordered materials in energy and 
electronic technologies

Disordered rock salt (DRX) 
in Li batteries

Amorphous semiconductor 
in electronic devices

M. Saber et al. Inorganic Chemistry (2023)



Designing combinatorial materials
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Insulator

Metal

Metal–insulating transition (MIT) materials
• Tradeoff btw. resistivity change Δ𝜌𝜌/𝜌𝜌 

and temperature 𝑇𝑇MIT

MIT materials are useful in microelectronic devices:

H. Zhang et al. Accounts of Materials Research (2025)
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