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Methods

space > better generalizability of models

Data-centric informatics has promoted materials discovery and design
* Models, e.g., machine learning (ML), draw much attention
 (Quality of data is equally important but less studied

This work focuses on data bias: lower bias = better coverage of design

* A metric for measuring bias in materials data
A framework guiding data acquisition to mitigate the bias

Problem Statement

Where materials informatics researchers get data

certain applications

These data sources are often biased
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Example: structure—stability bias in OQMD

Distribution of Formation Energy: OQMD-8
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Some crystal families are
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Quantitative bias metric
Information entropy
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H(AE) of a family ~ diversity
Fairness in diversity ~ bias
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ET-AL framework: maximize H of underrepresented systems
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ET-AL can mitigate data bias, thus benefiting data-driven models

 Help researchers improve the quality of datasets
* QGuide the construction of materials data platforms

* Applicable to data-centric informatics in other scientific domains
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Virtual experiments on Jarvis dataset (size ~12K)

ML models for B and G
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Reducing bias benefits ML modeling for materials properties.
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