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Where materials informatics researchers get data

Literature Databases Experiments/computation

Usually “good 
performers” in 
certain applications

Built upon known 
structures/prototypes

Generate new data, 
can mitigate the bias

These data sources are often biased

Information entropy

𝐻𝐻 𝑌𝑌 = −�
𝑌𝑌
𝑝𝑝 𝑦𝑦 ln 𝑝𝑝 𝑦𝑦 d𝑦𝑦

𝐻𝐻 Δ𝐸𝐸 of a family ~ diversity
Fairness in diversity ~ bias

ET-AL framework: maximize 𝐻𝐻 of underrepresented systems

Monte Carlo inference for uncertainty in 𝐻𝐻

Virtual experiments on Jarvis dataset (size ~12K)

ET-AL successfully fixed the 
artificially created bias.

ET-AL selects samples in 
underrepresented regions

Reducing bias benefits ML modeling for  materials properties.

Data-centric informatics has promoted materials discovery and design
• Models, e.g., machine learning (ML), draw much attention
• Quality of data is equally important but less studied
This work focuses on data bias: lower bias  better coverage of design 
space  better generalizability of models
• A metric for measuring bias in materials data
• A framework guiding data acquisition to mitigate the bias

ET-AL can mitigate data bias, thus benefiting data-driven models
• Help researchers improve the quality of datasets
• Guide the construction of materials data platforms
• Applicable to data-centric informatics in other scientific domains

Material

Crystal graph Fingerprint

Features

Pretrained graph 
neural network

Toolchain built upon 
Matminer and Magpie

Vector, encoding 
structural 

information
(for ET-AL)

Tabular, structural 
& chemical 
descriptors

(for ML)

Representations of materials (input to the models)

Example: structure–stability bias in OQMD

−Δ𝐸𝐸 ~ stability
In physics:

symmetry↑ stability↑
While in the data:

The opposite.

Some crystal families are 
underrepresented.

Quantitative bias metric
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ET-AL
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(low bias)

ML models for 𝐵𝐵 and 𝐺𝐺
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(Δ𝐸𝐸 known)

Unlabeled data
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